MAPK pathway

The MAPK/ERK pathway (also known as the Ras-Raf-MEK-ERK pathway) is a chain of proteins in the cell that communicates a signal from a receptor on the surface of the cell to the DNA in the nucleus of the cell.

The pathway includes many proteins, such as mitogen-activated protein kinases (MAPKs), originally called extracellular signal-regulated kinases (ERKs), which communicate by adding phosphate groups to a neighboring protein (phosphorylating it), thereby acting as an "on" or "off" switch.

Signal Flow
The signal that starts the MAPK/ERK pathway is the binding of extracellular mitogen to a cell surface receptor. This allows a Ras protein (a Small GTPase) to swap a GDP molecule for a GTP molecule, flipping the "on/off switch" of the pathway. The Ras protein can then activate MAP3K (e.g., Raf), which activates MAP2K, which activates MAPK. Finally, MAPK can activate a transcription factor, such as Myc. This process is described in more detail below.

Ras activation
Receptor-linked tyrosine kinases, such as the epidermal growth factor receptor (EGFR), are activated by extracellular ligands, such as the epidermal growth factor (EGF). Binding of EGF to the EGFR activates the tyrosine kinase activity of the cytoplasmic domain of the receptor. The EGFR becomes phosphorylated on tyrosine residues. Docking proteins such as GRB2 contain an SH2 domain that binds to the phosphotyrosine residues of the activated receptor.[2] GRB2 binds to the guanine nucleotide exchange factor (GEF) SOS by way of the two SH3 domains of GRB2. When the GRB2-SOS complex docks to phosphorylated EGFR, SOS becomes activated.[3] Activated SOS then promotes the removal of GDP from a member of the Ras subfamily (most notably H-Ras or K-Ras). The Ras protein can then bind GTP and become active.
Apart from EGFR, other cell surface receptors that can activate this pathway via GRB2 include Trk A/B (regulates synaptic strength and plasticity in the mammalian nervous system.), Fibroblast growth factor receptor (FGFR)(bind to FGFs) and PDGFR (Platelet-derived growth factor receptors, related with MAPK and PI3K/Akt).

Kinase cascade
Activated Ras then activates the protein kinase activity of a RAF kinase.[4] The RAF kinase phosphorylates and activates a MAPK/ERK Kinase (MEK1 or MEK2). The MEK phosphorylates and activates a mitogen-activated protein kinase (MAPK).
RAF and MAPK/ERK are both serine/threonine-specific protein kinases. MEK is a serine/tyrosine/threonine kinase.

Regulation of translation and transcription
Three of the many proteins that are phosphorylated by MAPK are shown in the figure to the right. One effect of MAPK activation is to alter the translation of mRNA to proteins. MAPK phosphorylates the 40S ribosomal protein S6 kinase (RSK). This activates RSK, which, in turn, phosphorylates ribosomal protein S6.[5] Mitogen-activated protein kinases that phosphorylate ribosomal protein S6 were the first to be isolated.[4]
MAPK regulates the activities of several transcription factors. MAPK can phosphorylate C-myc. MAPK phosphorylates and activates MNK, which, in turn, phosphorylates CREB. MAPK also regulates the transcription of the C-Fos gene. By altering the levels and activities of transcription factors, MAPK leads to altered transcription of genes that are important for the cell cycle.
The 22q11, 1q42, and 19p13 genes, by affecting the ERK pathway, are associated with schizophrenia, schizoaffective disorder, bipolar disorder, and migraines.

 

Regulation of cell cycle entry and proliferation
The ERK pathway plays an important role of integrating external signals from the presence of mitogens such as epidermal growth factor (EGF) into signaling events promoting cell growth and proliferation in many mammalian cell types. In a simplified model, the presence of mitogens and growth factors trigger the activation of canonical receptor tyrosine kinases such as EGFR leading to their dimerization and subsequent activation of the small GTPase Ras.[6] This then leads to a series of phosphorylation events downstream in the MAPK cascade (Raf-MEK-ERK) ultimately resulting in the phosphorylation and activation of ERK. The phosphorylation of ERK results in an activation of its kinase activity and leads to phosphorylation of its many downstream targets involved in regulation of cell proliferation. In most cells, some form of sustained ERK activity is required for cells to activate genes that induce cell cycle entry and suppress negative regulators of the cell cycle. Two such important targets include Cyclin D complexes with Cdk4 and Cdk6 (Cdk4/6) which are both phosphorylated by ERK.[7] The transition from G1 to S phase is coordinated by the activity of Cyclin D-Cdk4/6, which increases during late G1 phase as cells prepare to enter S-phase in response to mitogens. Cdk4/6 activation contributes to hyper-phosphorylation and the subsequent destabilization of retinoblastoma protein (Rb).[7] Hypo-phosphorylated Rb, is normally bound to transcription factor E2F in early G1 and inhibits its transcriptional activity, preventing expression of S-phase entry genes including Cyclin E, Cyclin A2 and Emi1.[6] ERK1/2 activation downstream of mitogen induced Ras signaling is necessary and sufficient to remove this cell cycle block and allow cells to progress to S-phase in most mammalian cells.